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Abstract. Extending the concept of texture to the geometry of a mesh mani-
fold surface, opened the way to the idea of classifying 3D relief patterns as an
emerging topic in 3D Computer Vision, with several potential applications. In
this paper, we propose an original modelling solution to address this novel task.
Following the recent introduction of the LBP computation framework on mesh
manifolds (mesh-LBP), we first extend this framework to the different variants of
2D LBP by defining mesh-LBP variants. The compliance of these extensions with
the original LBP in terms of uniformity is also investigated. Then, we propose a
complete framework for relief patterns classification, which performs mesh pre-
processing, multi-scale mesh-LBP extraction and descriptors classification. Ex-
perimental results on the SHREC’17 dataset show competitive performance with
respect to state of the art solutions.

1 Introduction

The recent advancements of 3D imaging technologies resulted in a new generation of
acquisition devices capable of capturing the geometry of 3D objects. High-resolution
3D static scanners as well as devices with 3D dynamic acquisition capabilities that pro-
vide a continuous flow of the 3D geometry of a scene are now available. In addition to
this, the geometric and photometric information are often captured in a synchronized
way. The geometric information captured by such devices represents the 3D coordinates
of a set of samples of the object surface, typically in the form of a point cloud. However,
directly processing point clouds is not convenient or even possible so that other repre-
sentation formats have established. Depth images are one of the most commonly used
imaging modality, since they permit a straightforward extension to the depth dimension
of many computer vision and pattern recognition solutions developed in the literature
for analyzing the photometric information in 2D images. Though the idea of extending
2D techniques is attractive, this modality loses the full 3D geometry by reducing it to
a 2.5D projection. Instead, the full 3D shape information of an object can be preserved
and encoded in a simple, compact and flexible format by using a triangular mesh man-
ifold. However, passing from a point cloud to a mesh manifold is not an easy problem
in itself: reconstructing the real structure of the manifold surface is often difficult, espe-
cially in the case of objects with complex topology or when multiple scans of the same
object must be merged together [27].



Using mesh manifolds as inputs, several studies addressed the problem of retriev-
ing/classifying 3D shapes based on their similarities [27]. In most of the cases, synthetic
models generated by ad-hoc softwares have been used, while reconstructed meshes have
been considered more rarely. An even less investigated but emerging problem, which is
of interest for its potential application in several contexts, is that of classifying 3D relief
patterns. A peculiar characteristic of patterns is the fact their style does not depend by
the overall structure of the shape, rather it identifies parts and local properties that are
independent of the global shape. In particular, relieves of interest are those character-
ized by some form of regularity and repeatability across the surface so that they can be
regarded as the 3D geometric equivalent of textures in 2D images. Examples are knitted
fabrics, artworks patterns, artists styles or natural structures like tree barks [23], rock
types or engravings [39], etc.

A recent trend, motivated by outstanding results in several challenging contexts,
applies deep convolutional neural network architectures to solve a number of detection,
recognition and classification problems in 2D still images or videos [14,17,26]. The
application of such deep learning tools is facilitated by the grid structure of images and
the access to large repositories of training data. Less obvious appears the extension of
such framework to geometric contexts, such as graphs, matrix manifolds, or meshes [6].
Though some results in this direction do exist, they are not yet as competitive as 3D
“classic” solutions [12] and consolidated as in 2D. The need for large training dataset
remains also an obstacle in 3D applications due to the difficulty of acquiring very large
repositories of 3D scans [29]. The recent PointNet deep learning solution proposed by
Charles et al. [7], while addresses effectively object classification in point cloud format,
is suited for volumetric objects rather than shape texture variations on the manifold.

On another side, LBP has been one of the most simple and widely spread local tex-
ture descriptor in 2D and 2.5D. LBP has been proposed as texture descriptor for 2D still
images for the first time by Ojala et al. [22]. Thanks to its simplicity and discrimina-
tive power, LBP has been successfully implemented for Visual Inspection [18], Remote
Sensing [9], Motion Analysis [30], Face Recognition [1,2] and Expression Recogni-
tion [24] in both 2D and 2.5D supports. However, its application to mesh manifolds
could not be achieved till a mesh-version was introduced by Werghi et al. [36,34,35,37].

Based on the above considerations, in this paper, we propose a novel solution for
3D relief patterns classification, which relies on the extension of LBP and its variants to
mesh manifolds. In doing so, as first contribution of our work, we define the mesh-LBP
variants as counterparts of LBP variants on the triangular mesh manifold support, and
assess their descriptive capabilities. Then, as second contribution, we propose an origi-
nal modeling approach that uses mesh-LBP variants in the task of relieves classification.
This is obtained by presenting a complete framework that includes a suitable prepro-
cessing of the mesh, multi-scale extraction of mesh-LBP descriptors, and descriptors
classification using SVM.



2 Related Work

The problem of relief pattern classification is of quite new definition. Therefore, most of
the works that we summarize in the following have been presented and participated to
the SHREC’17 contest, track on “Retrieval of surfaces with similar relief patterns” [5].

One of the first work addressing the problem of effectively describing 3D relief
patterns is due to Werghi et al. [31,32]. In their work, mesh-LBP was proposed as a ex-
tension of LBP to mesh manifolds. They also showed the applicability of this approach
for geometric texture retrieval for a small set of prototype meshes.

In order to capture texture features of object surface, Tatsuma and Aono [5] es-
timated statistics of local features extracted from the depth-buffer image as a shape
descriptor. To emphasize the texture of object surface, they converted the depth-buffer
image into the LBP image. For feature detection and description from the LBP image
(LBPI), the KAZE features [3] was employed.

Limberger and Wilson [5] proposed a curvature-based Laplace Beltrami operator
(KLBO) to describe the relief patterns of surfaces. After computing the eigendecompo-
sition of the KLBO, the Improved Wave Kernel signature (IWKS) [16] was computed
and encoded using two different encoding schemes: the Fisher Vector (FV) or the Su-
per Vector (SV). Lastly, differences between encodings were computed using Euclidean
distance, after reducing feature dimensionality by computing PCA.

Siprian and Bustos [5] applied the Signature Quadratic Form Distance (SQFD) [4]
along with intrinsic spectral descriptors for relief retrieval. On the one hand, the SQFD
distance is used as a suitable and effective alternative to compare 3D objects represented
as a collection of local features [25]. On the other hand, spectral features have proven
to be robust against several transformations, while keeping discriminative geometric
information. This proposal combined these two methods in order to represent and assess
the similarity between relief patterns.

In [5], Velasco-Forero and Fehri, proposed an image covariance descriptor from
morphological transformation of local curvature estimation for a given 3D mesh (CMC).
Four main components were used to compute this descriptor: (1) The local principal
curvatures and the Gaussian curvature were first computed; (2) Curvature values on the
3D surface were projected to a flat 2D surface. Accordingly, the boundary of the mesh,
i.e., the set of vertices that are only referenced by a single triangle in the mesh was
found. Three curvature images for the boundary were then derived using SVM for solv-
ing a regression problem on the boundary points; (3) Morphology operators were then
applied to the curvature images, with 32 transformations with a final total of 96 images;
(4) The covariance matrix of 96 images was computed, thus producing a descriptor as
a square matrix of size 96× 96. The similarity between two meshes was calculated via
their representation as covariance matrices.

Sun et al. [5] developed on the idea of modelling convex/concave properties and lo-
cal geometrical features by the interior dihedral angle of each edge of the mesh. In doing
so, they proposed a statistical feature called Interior Dihedral Angle Histogram (IDAH).
Firstly, they calculated all the interior dihedral angles of the model surface. Then, the
distribution histogram was calculated in different intervals. Finally, they adopted the
Manhattan distance between histograms to describe the model similarity. Also, the au-
thors converted the model into a “geometry image”. The 3D model is parametrized



on a spherical domain and then mapped onto an octahedron, which is then cut on its
edges obtaining a flat and regular geometry image. HOG features are extracted from
the geometry image (GI HOG).

Masoumi et al. [5] used a Geodesic Multi-Resolution (GMR) descriptor [19] by in-
corporating the vertex area into the definition of spectral graph wavelet [15] in a bid
to capture more geometric information and, hence, further improve its discriminative
ability. Moreover, Mexican hat wavelet has been utilized as a generating kernel, which
considers all frequencies equally-important overall as opposed to the cubic spline ker-
nel [15].

3 Background on LBP and LBP Variants

On its first definition, LBP generates a binary sequence for each image pixel (from
now on referred as central pixel) analyzing its neighborhood inside a 3 × 3 window.
According to (1), each neighbor pixel value (ni) is compared with the central one (nc),
assigning 1 if the value is greater or equal, and 0 otherwise:

LBP(nc) =
N−1∑
i=0

s(ni − nc) · 2i , (1)

where s(x) is the step function. Then, the binary value is multiplied by the power of
two with respect to the given pixel position. Later on, in [21] a multi-scale and rotation
invariant LBP version was presented.

One of the firstly proposed LBP variant is the Median Binary Pattern (MBP) [10].
Compared to standard LBP that uses nc as threshold, the simple local median among
all the neighbor values is used to reduce the error caused by noise. MBP is, therefore, a
9 bits pattern since it considers the central pixel like its surroundings.

In [40], a combination of binary patterns is used for Face Recognition. Completed
Local Binary Pattern (CLBP) considers not only the sign of di = ni − nc (CLBP-S
in (1)), but also its magnitude |di| (CLBP-M) and central pixel intensity (CLBP-C),
adding more discriminant power.
CLBP-S/M/C are then combined in different configurations, such as histograms con-
catenation or multi-dimensional histogram computation.

A new branch of LBP variants expanded after the first presentation of a Center-
Symmetric LBP. CS-LBP compares center-symmetric pair of pixels ignoring the central
pixel value [11]. This technique halves the number of comparisons, leading to faster
computation and smaller descriptor size. Without nc, CS-LBP requires a threshold τ :

CS-LBPR,N (τ) =

(N/2)−1∑
i=0

s
(
ni − ni+(N/2)

)
· 2i , s(x) =

{
1 x ≥ τ
0 x < τ

(2)

being ni and ni+(N/2) the pairs of center-symmetric values, while s(x) is the step
function.

To overcome the limitation of the threshold, in [38] an Improved CS-LBP (ICS-
LBP) has been designed. Similarly to (2), ICS-LBP compares center symmetric couples
of pixels using the central pixel value as discriminant.



Otherwise, it is possible to replace nc with the mean m = 1
N

∑N−1
i=0 ni, to reduce noise

dependency as discussed in [13].
In [8], Centralized Binary Pattern (CBP) takes the advantage of comparing center-

symmetric couple of pixels, but it also comprehends the value of the central pixel, ap-
plying the largest weight to it. In this way, the effectiveness of the central pixel value is
strengthened, and a discriminant power is added to a smaller size descriptor.

Another family of LBP variants is characterized by the use of masks on window’s
values. While conventional LBP encodes the values as a non-directional 1st order oper-
ator among local neighbors, in [20] a Sobel operator is applied to generate a first order
derivative along x and y directions to characterize the image information: where ∗ is
the convolution operator with the original image. Then, the gradient magnitude image
Igm =

√
I2x + I2y is obtained. The LBP is finally generated using (1) with Igm values

encoding the magnitude of local variations.

4 Mesh-LBP Variants

Mesh-LBP is an LBP-like descriptor employed on mesh manifolds [32], particularly in
3D face recognition [36]. While the potentiality of using a real 3D support has been in-
vestigated in [37,28], the possibility to export successfully 2D LBP variants to the mesh
manifold has to be addressed yet. While standard LBP compares 8 pixels belonging to
a circle of a certain radius around a central pixel, mesh-LBP generates a concentric
sequence of ring-like patterns around a central facet, whereby facets are ordered in a
circular fashion in each ring. Mesh-LBP computation is shown in (3), whereby r and
m are the ring number, and the number of facets per ring, respectively, s is the step
function, and h is a scalar function on the mesh. α(k) is a discrete function, where k
represents the facet position.

meshLBP r
m(fc) =

m−1∑
k=0

s(t) · α(k) with t = h(frk )− h(fc) (3)

Two functions were defined in the mesh-LBP, namely, α1(k) = 1 that sums the digits
of the pattern; and α2(k) = 2k that multiplies single digit by a power of 2, as originally
proposed in [22].

So far, seven mesh-LBP variants have been implemented and tested: (a) mesh-MBP,
(b) mesh-CSLBP, (c) mesh-ICSLBP, (d) mesh-ICSLBP-M with central facet value re-
placed by the mean across the ring as threshold, (e) mesh-CBP, (f) mesh-CLBP and
(g) mesh-LBP-Sobel. Considering these seven variants, the original mesh-LBP with the
two functions α1 and α2, and the three scalar functions on the mesh (Local Depth (LD),
Mean Curvature (H), and Curvedness (C)), we have a total of 8 × 2 × 3 = 48 mesh-
LBP variants. We can categorize these in α1 and α2 variants. Also, since the LBP is a
differential operator, we can categorize the variants as first-order and second order dif-
ferentiation variants, depending on the fact the scalar function on the mesh represents a
raw entity (e.g., LD) or a derivative entity (e.g., H and C).

In the particular case of mesh-MBP, α1(k) is meaningless because it uses a median
threshold; while for mesh-CLBP, α2(k) is skipped because of its pattern length (see
Table 1). Therefore, the total number of variants investigated is 42.



Fig. 1: Uniformity analysis performed
on three sample meshes from different
datasets. The histograms show the per-
centage of patterns with a number of 0/1
transitions U ≤ 4. Reported results have
been obtained with the H descriptor.

Mesh-LBP variant (U) size α1 size α2

Mesh-LBP (4) 13 1125
Mesh-MBP (6) 13 2973
Mesh-CSLBP (4) 7 63
Mesh-ICSLBP (4) 7 63
Mesh-ICSLBP-M (4) 7 63
Mesh-CBP (4) 8 115
Mesh-CLBP (6) 26 380103

Table 1: Comparison of pattern size and
histogram size for α1(k) and α2(k), for
the different mesh-LBP variants. Unifor-
mity applied within brackets (U).

We compared the mesh-LBP variants to the standard mesh-LBP. First, we focused
on the uniformity aspect of the mesh-LBP variants descriptor (see Section 4.1); then,
we reported results for 3D Relief Pattern Classification (see Section 6).

4.1 Uniformity

In [21], evaluating the rotation invariant pattern, authors counted the number of 0/1
transitions in the binary pattern, and evaluated their frequency of occurrence. Then,
they observed that most of the pattern configurations had a number of transitions (U )
less than 2, So, a unique label (defined as “uniform”) can be assigned to all the patterns
with number of transitions above 2; that grouping method allows reducing the descriptor
size, while increasing its accuracy.

The same analysis has been performed for all our mesh-LBP variants considering
R = 1, . . . , 7 concentric rings around the central facet, and N = 12 points at each
ring. Since uniformity mainly depends on the pattern of the specific variant, mesh-LBP-
Sobel performs exactly as standard mesh-LBP, so regarding the uniformity analysis we
will refer to both of them as mesh-LBP. Although Center-Symmetric based approaches,
especially mesh-CSLBP and mesh-ICSLBP, have over 70% of patterns with U ≤ 2
among all the seven rings, we choose a more conservative value U ≤ 4. Figure 1 de-
picts the average percentage of uniform patterns, with U ≤ 4 using theH descriptor. As
shown in the figure, four variants over six outperform the standard mesh-LBP percent-
age of patterns with number of transitions U ≤ 4: they all belong between 97%−100%
even at rings 6 and 7. Mesh-CLBP and mesh-MBP, instead, reach an average above
85% with U ≤ 6 due to their pattern length and characteristics. Grouping all the pat-
terns with U greater than a predefined value, it is possible to considerably reduce the
size of α2(k) descriptors as shown in Table 1.



5 Relief Patterns Classification

In this Section, we propose to use the mesh-LBP variants for relief pattern classification.
These patterns are given by geometric corrugations of the mesh with some regularity
and repetition and can be regarded as the surface equivalent of textures in 2D images.
Similarly to the 2D case, relief patterns (or geometric texture) are difficult to represent
and classify. They may be repetitions of simple textons of any size, or spread on the
whole surface. To handle such variety, we decided to represent the texture using multi-
scale histograms computed on circular regions. The possibility to describe the texture
with different scale factors helps to cope with different texture typology.

We used Ordered Rings of Facet (ORF) [33] to generate three concentric rings (Fig-
ure 2a). Such rings are sampled according to their diameter. Circular regions are then
extracted around each sampled point, and mesh-LBP histogram computation is applied
on the covered region. To comprise multi-scale information, the number of sampled
points at each ring and the circular region size are varied. While increasing the region
size, the number of points at each concentric ring decreases as shown in Figure 2b, 2c
and 2d. Finally, in order to augment the histogram representation power, the multi-scale
descriptors have been generated at three different locations for each training sample,
while only one location is used for the test.

Such descriptors are used to feed an SVM classifier. Here, two types of classification
have been used: (1) One-vs-all that trains one SVM for each class. In this case, positive
examples come from one class, while negative examples come from all the other classes.
(2) One-vs-one that trains n(n−1)

2 SVMs, where n is the number of classes. For each
SVM, positive examples come from one class, and negatives from another one.

6 Experimental Results and Evaluation Protocol

In Section 4, we have introduced the mesh-LBP variants and investigated their main
properties in a set of tests that proved their relevance with respect to the original mesh-
LBP. Based on this, in the following we experiment the mesh-LBP variants in the spe-
cific task of relief patterns classification. In doing so, we use a dataset introduced for an
open competition that allows us to compare with state of the art solutions.

Recently, a new database has been released for the SHREC’17 contest track on “Re-
trieval of surfaces with similar relief patterns” [5]. The database is composed by dif-
ferent patches of various textiles, each acquired in different poses and deformed shape
situations (a total of 180 models referred as original surfaces). For each scan, three pro-
cessing operations, designed to alter the mesh connectivity, have been applied to obtain,
respectively, meshes with 5K, 10K and 15K vertices. The database has a total of 720
samples.

The SHREC’17 competition protocol required the participants to submit a 720×720
matrix of mutual distances between all the database samples. Organizers elaborated
such matrices and evaluated them using several criteria such as Nearest Neighbor (NN),
First Tier (FT), Second Tier (ST) and other distances differentiating between the full
dataset (720 samples) and the dataset composed by the 180 original meshes. Also, con-
fusion matrices obtained from the NN classification were presented from the best results
of each participant.



Table 2: Comparison with
the results of the SHREC’17
competition as reported in [5].
Scores refer to the full dataset
using Nearest Neighbor (NN)
classification. We report
generically “Mesh-LBP Vari-
ants” since they all score the
same.

Classification Method NN

[5]

CH 19.60%
LBPI 82.80%
IDAH-1 39.00%
IDAH-2 30.60%
GI HOG 68.60%
SQFD-SIHKS 16.80%
SQFD-HKS 53.60%
SQFD-WKS 51.00%
CMC-1 71.80%
CMC-2 76.30%
CMC-3 64.70%
KLBO-FV-IWKS 98.60%
KLBO-SV-IWKS 97.80%
GMR 7.90%

Mesh-LBP Variants 99.77%

Fig. 2: The multi-scale regions used to describe a mesh
sample are reported: 2a concentric rings, where the sam-
pling points are located; 2b-2d multi-scale region extrac-
tion.

(a) (b) (c) (d)

Table 3: 5-folds cross validation SVM results. Only
Center-Symmetric based variants/descriptors are reported
for efficiency reasons.

Descriptor Combination
α2

One-vs-All One-vs-One
Mesh-CSLBP-H 97.73% 97.60%
Mesh-CSLBP-C 97.07% 97.07%
Mesh-CSLBP-LD 94.93% 95.20%
Mesh-ICSLBP-H 93.60% 93.73%
Mesh-ICSLBP-C 95.20% 94.93%
Mesh-ICSLBP-LD 98.00% 97.87%
Mesh-ICSLBP-M-H 95.47% 95.47%
Mesh-ICSLBP-M-C 96.40% 96.53%
Mesh-ICSLBP-M-LD 96.80% 97.07%
Mesh-CBP-H 97.20% 96.93%
Mesh-CBP-C 96.67% 96.93%
Mesh-CBP-LD 98.53% 98.53%

6.1 Results and Comparative Evaluation

In our tests, we performed the same experiment of the SHREC’17 competition with our
representation based on mesh-LBP variants comparing our results with those obtained
by the SHREC participants. We performed the experimentation on all the 7 mesh-LBP
variants, plus the original mesh-LBP. Each variant has been computed using Mean cur-
vature (H), Curvedness (C) and Local Depth (LD) in both their variants α1 and α2 as
described in Section 4.

The database is split into 5 folds: 4 used for training, and 1 for testing. The classifi-
cation is repeated five times in order to use all the 5 folds as test samples.

Globally, the methods presented in [5] perform quite poorly. In Table 2, we com-
pare the best results obtained by SHREC participants on the full database against those
resulting with our method and a baseline method proposed by SHREC’17 organizers.
The baseline method consist of a 128 bins histogram of the minimal curvature of the
surface (CH). SHREC participants used different distances to compare their descriptors
in the NN classification. We adopted the Bhattacharyya, Cosine and χ2 distances ob-



taining the same score among all the variants tested. All our variants outperform the
others, overtaking even the best KLBO-FV-IWKS result.

Since such results have been obtained with NN classification, they can be biased
by the inclusion of 4 meshes of the same original sample (i.e., meshes obtained by
resampling the original mesh with 5K, 10K and 15K vertices). Therefore, organizers
performed the same evaluation on the 180 original samples to get a better understand-
ing of the classification capabilities of the different approaches when considering only
the different samples of the same class, avoiding comparison with resampled meshes. In
this evaluation, all presented methods drastically decreased their performance, getting
a maximum of 63.3% (CMC-2), while KLBO-FV-IWKS scored only 52.2% at its best
value. The aim of such experiment is to judge the method performance on practical ap-
plications, evaluating their ability in pattern retrieval: KLBO-FV-IWKS, in fact, seems
to include global shape information in its classification producing such accuracy decay
(from 98.6% to 52.2% on its best result).

We designed a method capable of measuring the class discrimination using SVM as
described in Section 5. To design a fair comparison, we need to specify that the protocol
implemented is not exactly the same as for the SHREC’17 competition. Indeed, it con-
siders all the database samples, however the contribution of resampled meshes during
the training phase is minimal, and does not substantially affect the class discrimination.
In the hypothetic best case, three samples of the same patch would be on the training set,
while one used as test; with 48 samples per class, and our 5-folds classification method,
the three meshes would be less than 7.8% of the training sample, while 5.2% and 2.6%
if the samples in the training are two or one, respectively. As shown in Table 3, our
mesh representation based on mesh-LBP variants clearly outperforms results presented
in [5]. The LD descriptor scores the best among all the mesh-LBP variants except for
mesh-CSLBP. Moreover, the ability to shrink the histogram size of some mesh-LBP
variants (see Table 1), allowed us to gain on the SVM training performances. In fact,
α2 descriptors show remarkable scores all between 93.60% and 98.53%.

7 Discussion and Conclusion

In this paper, we extended different varieties of LBP variants to the mesh manifold,
whereby we derived a total of 48 variants on the mesh by combination of different
scalar functions on the mesh and binary digits weights.

Our study reveals that the mesh variants preserve the original behavior of their 2D
counterparts with regard to the uniformity aspect. Also, a comparative study for geo-
metric texture detection, has shown mesh-LBP variants capabilities to enhance further
analysis tasks on mesh manifold. Referring to Table 1, four new mesh-LBP variants
substantially reduced the computational cost by bringing down the histogram size to 63
and 155, as compared to the original size of 1125 in the original mesh-LBP. Our exper-
iments reveal that such small size mesh-LBP boost the SVM training efficiency without
compromising the accuracy. Comparing with the most recent state of the art works pro-
posed for relief patterns classification, tested on the SHREC’17 data set, SVM results
showed a clear improvement brought by our mesh-LBP extension approach.
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